Compactly Supported (bi)orthogonal Wavelets Generated by Interpolatory Reenable Functions
نویسندگان
چکیده
This paper provides several constructions of compactly supported wavelets generated by interpolatory reenable functions. It was shown in D1] that there is no real compactly supported orthonormal symmetric dyadic reenable function, except the trivial case; and also shown in L] and GM] that there is no compactly supported interpolatory orthonormal dyadic reenable function. Hence, for the dyadic dilation case, compactly supported wavelets generated by interpolatory reenable functions have to be biorthogonal wavelets. The key step to construct the biorthogonal wavelets is to construct a compactly supported dual function for a given interpolatory reenable function. We provide two explicit iterative constructions of such dual functions with desired regularity. When the dilation factors are larger than 3, we provide several examples of compactly supported interpolatory orthonormal symmetric reenable functions from a general method. This leads to several examples of orthogonal symmetric (anti-symmetric) wavelets generated by interpolatory reenable functions.
منابع مشابه
Compactly supported (bi)orthogonal wavelets generated by interpolatory refinable functions
This paper provides several constructions of compactly supported wavelets generated by interpolatory reenable functions. It was shown in D1] that there is no real compactly supported orthonormal symmetric dyadic reenable function, except the trivial case; and also shown in L] and GM] that there is no compactly supported interpolatory orthonormal dyadic reenable function. Hence, for the dyadic d...
متن کاملMultivariate Compactly Supported Fundamental Reenable Functions, Duals and Biorthogonal Wavelets
In areas of geometric modeling and wavelets, one often needs to construct a compactly supported reenable function with suucient regularity which is fundamental for interpolation (that means, (0) = 1 and () = 0 for all 2 Z s nf0g). Low regularity examples of such functions have been obtained numerically by several authors and a more general numerical scheme was given in RiS1]. This paper present...
متن کاملFundamental Re nable Functions , Duals and Biorthogonal
In areas of geometric modeling and wavelets, one often needs to construct a compactly supported reenable function with suucient regularity which is fundamental for interpolation (that means, (0) = 1 and () = 0 for all 2 Z s nf0g). Low regularity examples of such functions have been obtained numerically by several authors and a more general numerical scheme was given in RiS1]. This paper present...
متن کاملA Construction of Bi orthogonal Functions to B splines with Multiple Knots
We present a construction of a re nable compactly supported vector of functions which is bi orthogonal to the vector of B splines of a given degree with multiple knots at the integers with prescribed multiplicity The construction is based on Hermite interpolatory subdivision schemes and on the relation between B splines and divided di erences The bi orthogonal vector of functions is shown to be...
متن کاملMultivariate Compactly Supported Fundamental Re nable Functions
For a given continuous compactly supported reenable function that is fundamental (that means, () =), this paper presents several methods to construct, directly from , compactly supported fundamental reenable functions with higher regularity. Asymptotic regularity analyses of the constructions are given. These constructions immediately provide multivariate interpolatory subdivision schemes that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997